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Abstract

We describe the development of a neural network model for estimating primary production of phytoplankton. Data
from an enriched estuary in the eastern United States, Chesapeake Bay, were used to train, validate and test the
model. Two error backpropagation multilayer perceptrons were trained: a simpler one (3-5-1) and a more complex
one (12-5-1). Both neural networks outperformed conventional empirical models, even though only the latter, which
exploits a larger suite of predictive variables, provided truly accurate outputs. The application of this neural network
model is thoroughly discussed and the results of a sensitivity analysis are also presented. © 1999 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Estimates of phytoplankton primary produc-
tion based on empirical models are increasingly
used as an alternative to direct data acquisition
that can be both expensive and time consuming.
This is particularly true in the era of satellite
oceanography because remote measurements of
ocean color that provide global coverage of phy-
toplankton biomass can serve as inputs to models
that estimate production. Although empirical
models of primary production are usually based
on simple linear relationships (e.g. Cole and Clo-
ern, 1987), the estimates they provide are reason-

* Corresponding author. Fax: + 39-81-7641355.
E-mail address: mscardi@mclink.it (M. Scardi)

ably accurate because primary production is
largely regulated by variables that are simple to
measure, i.e. downwelling irradiance and phyto-
plankton biomass.

Despite the usefulness of linear relationships for
estimating production, other factors that affect
photosynthetic carbon assimilation are related to
production in a non-linear manner, such as pho-
tosynthetic efficiency of the phytoplankton cells.
Therefore, more flexible empirical models that are
both simple and capable of reproducing these
relationships can theoretically play an important
role in improving our ability to estimate
production.

Conventional models that attempted to address
this problem by means of multiple linear regres-
sion (e.g. Eppley et al., 1985), or the use of
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semi-analytic formulations (e.g. Balch et al.,
1989), did not perform significantly better than
much simpler empirical models. An alternative
approach, involving the use of neural networks
has recently generated significant improvement in
estimating production (Scardi, 1996) or other
complex non-linear ecological processes (Lek et
al., 1996) where sufficient training data were
available. Moreover, neural networks are also
able to exploit the heterogeneous information that
is provided by other variables that may be corre-
lated to primary production on a regional scale
only, and to use this information to achieve refin-
ement of primary production estimates.

The first neural network that was trained as an
empirical model of phytoplankton primary pro-
duction (Scardi, 1996) was essentially a toy model,
because of the limited number of training pat-
terns. It was developed with a small data set that
was reported in a comprehensive study of phyto-
plankton photosynthesis in Chesapeake and Dela-
ware Bays (Harding et al., 1986). These data were
used in initial efforts because the data on perti-
nent variables were assembled and readily usable,
and comparisons with linear models could be
made rather easily. The main purpose of that
work was to show that a simple error back-propa-
gation neural network had the potential to out-
perform conventional empirical models of
phytoplankton primary production. Since that ini-
tial report, further research has been carried out
on primary production and ancillary data for
Chesapeake Bay spanning over a decade (Harding
et al., in prep.) and on the application of neural
networks both to phytoplankton production mod-
elling (Scardi, in prep.) and to other related topics
(Recknagel et al., 1996; Recknagel, 1997).

In this paper, we present new results of a case
study that focused on developing a reliable mod-
elling tool for Chesapeake Bay. Contemporary
studies of trophic dynamics and remotely sensed
observations providing synoptic biomass fields in
the Bay are components of ongoing research that
entail a need for accurate estimates of phyto-
plankton primary production. Beyond the specific
use of neural network analysis to estimate pri-
mary production in Chesapeake Bay, however,
this approach has general ecological relevance. If

successful with data from this very complex estu-
arine ecosystem in which the principal variables
regulating primary production are characterized
by variability on a wide range of time and space
scales, the likelihood of a broader application to
other marine systems is enhanced.

2. Materials and methods

The 1982-1983 data that were used in the
initial attempt to develop a neural network model
of primary productivity were collected on a series
of five cruises in Chesapeake and Delaware Bays.
Further development of this model, however, was
focused on Chesapeake Bay only. Chesapeake
Bay, in Maryland and Virginia, is the largest bay
on the Atlantic coast of the US (Fig. 1). It is
about 320 km long from north to south and from
5 to 40 km wide. The Susquehanna and the
Potomac are the largest of its many tributary
rivers and creeks. The bay is a shipping artery,
and the bay cities of Norfolk, VA., and Balti-
more, MD., are among the nation’s leading ports.
Waterfowl, fish, oysters, and crabs, long abun-
dant, have been threatened by pollution in recent
years. Chesapeake Bay is characterized by strong
gradients in salinity, turbidity, dissolved nutrients
and chlorophyll as a measure of phytoplankton
biomass.

Integral, daily primary production was mea-
sured using '*C assimilation in simulated in situ
sunlight incubations. Neutral density screens were
used to attenuate sunlight and generate a light
series, and surface seawater was circulated for
cooling. Downwelling irradiance was measured
continuously with a LiCor quantum sensor posi-
tioned in an unobstructed location on the ship,
and vertical profiles were made throughout the
day using an underwater LiCor quantum sensor
to ascertain the diffuse attenuation coefficient for
photosynthetically available radiation (PAR).
Further details of the methods are contained in
Harding et al. (1986).

Measurements of chlorophyll concentrations
were made using standard fluorometric methods
(Strickland and Parsons, 1968), nutrient concen-
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trations were determined by wet chemistry on a
Technicon AutoAnalyzer 11, and ancillary data on
other properties were collected at the same times
and locations as samples were collected for mea-
suring primary productivity. The reference to the
original data source (Harding et al., 1986), con-
tains most of the detailed methods and other
aspects of the data collection are presented by
Fisher et al. (1988).

Measurements of primary production made
from 1987-1996 used the same methods as were
used in the 1982—-1983 cruises. Stations were pre-
dominantly located within Chesapeake Bay along
the mainstem axis from the limit of salt to the
mouth and plume regions nearly 300 km seaward.
Approximately ten stations were occupied on each
cruise, with the exception of 1995-1996 when
more than double this number of stations was
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Fig. 1. Chesapeake Bay is the largest bay on the Atlantic coast
of the US. It is about 320 km long and from 5 to 40 km wide.

occupied per cruise and included sampling lateral
to the mainstem axis. Each measurement of pri-
mary production was accompanied by collection
of a full set of ancillary data.

The most recently collected data used in this
analysis were from 1995-1997 and were collected
on a series of cruises addressing Trophic Interac-
tions in Estuarine Systems (TIES) sponsored by
the US National Science Foundation. Of these
data, the 1997 measurements were used to test the
NN model and not to develop it.

All the neural networks we used as empirical
models were multilayer perceptrons with one hid-
den layer and only one neuron in the output layer
(i.e. phytoplankton primary production). This is
by far the most common and flexible kind of
neural network and it provides good perfor-
mances in a wide range of applications.

Our applications aimed at training the most
generalized neural network, rather than the one
that optimally fitted the training test. Therefore,
the error backpropagation training algorithm was
used in its simplest version, as learning rate, set to
a unit value, was not allowed to vary during
training and no momentum term was used.

The training procedure was based on a subset
of the 1982—-1996 data set, which consisted of 326
patterns. In fact, in the case of our final model,
only 100 patterns were randomly selected and
used as training set, whereas the remaining 226
patterns were used as validation set. Even though
a large validation set usually prevents overtrain-
ing, other techniques were also applied in order to
obtain the most generalized model.

In particular, a small amount of Gaussian noise
(u=0, 0 =0.01) was added to the input patterns
(Gyorgyi, 1990) and only a subset (n = 50) of the
training set was randomly selected for each train-
ing epoch. The random selection of the training
subset was also needed because a learning per
pattern strategy was chosen and therefore it was
necessary not to always submit the training pat-
terns in the same order. Moreover, an early stop-
ping strategy was used in the training procedure
(i.e. training was stopped as soon as the valida-
tion set error started to increase).

The best structure of the neural network models
was determined on the basis of empirical tests,
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Table 1
Neural network input and output variables®
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Variable units min max
Input

1 27-d

—| cos Ty +1 None 0.0 1.0
2 365

1 2n-d

—| sin reay +1 None 0.0 1.0
2 365

Latitude Degrees 36.8 39.5
Longitude Degrees 75.6 76.6
Station depth m 0.0 45.0
Water temperature °C 0.0 32.0
Salinity PSU 0.0 32.0
Surface chlorophyll concentration (log,,) mg m~—3 —0.8 1.9
Total chlorophyll in the photic zone (log;) mg m 2 -0.3 2.7
Surface downwelling irradiance E m~2 day~! 0.0 80.0
Light extinction coefficient m~! 0.0 6.0
Photic zone depth m 0.0 25.0
Output

Phytoplankton primary production (log,,) mg C m~2 day ! 0.9 3.9

@ Units and the minimum and maximum values that were used to scale raw data to [0, 1] intervals are also shown. Variable names
followed by (log,,) indicate that raw values have been log-transformed before scaling them to a [0, 1] interval.

where hidden layers with three to 15 neurons were
used. The best performance was obtained with
five neurons in the hidden layer both in the case
of the simpler model (three inputs) and in the case
of the more complex one (12 inputs). However,
the differences among neural networks with dif-
ferent structures were not dramatic and only the
performance of the 3-x-1 model was perceivably
degraded when more than ten hidden neurons
were used.

The simpler 3-5-1 model used surface chloro-
phyll concentration, surface downwelling irradi-
ance and depth of the photic zone as input
variables, whereas nine more variables were se-
lected as additional inputs for the more complex
neural network. Input and output variables of this
neural network are listed in Table 1, where the
units and values that were assumed as limits to
scale variables into [0, 1] intervals are also given.
Inputs for both phytoplankton biomass and pri-
mary production were log,,-transformed before
scaling them to a [0, 1] interval. The log transfor-
mation was performed on the basis of both a
theoretical assumption and an empirical test. The
theoretical assumption was that the mean square

error of the neural network output will be biased
when raw data are used. This pertains because
training patterns containing high values for
biomass and primary production, containing pro-
portionately greater sampling and measurement
errors, may unduly dominate the output. The
empirical test was carried out by comparing the
performance of neural networks trained with
transformed data to performance with raw data.
In the case of the final 12-5-1 neural network,
training on log-transformed data outperformed
training on raw data, as it allowed the neural
network to explain almost 20% more variance (the
determination coefficients were R?=0.546 and
R?=0.353, respectively).

The serial number of the day of the year was
transformed using sine and cosine functions (see
Table 1) that map the date onto a circle. Two
inputs—the total chlorophyll in the photic zone
and the photic zone depth—were computed on
the basis of other input variables. The total
chlorophyll in the photic zone (Table 1) was
obtained as the product of surface chlorophyll
concentration and photic zone depth, assuming
that the phytoplankton biomass is homogeneously
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distributed in the upper water column. The photic
zone depth (Table 1), i.e. the depth where the
available downwelling irradiance is the 1% of the
surface downwelling irradiance, was obtained as
4.605 (i.e. In 0.01) divided by the light extinction
coefficient (Table 1). If the resulting value was
larger than the station depth (Table 1), then the
latter was assumed as photic zone depth.

3. Results

The toy model presented by Scardi (1996) per-
formed well using the 1982-1983 data set on
which it was trained (R?=0.940). When used
with a much larger data set spanning 1982-1996
and encompassing a wide range of environmental
conditions, this model did not perform nearly as
well (R?=0.156), as shown in Fig. 2. This rela-
tively simple approach was based on a 3-5-1 neu-
ral network that used surface downwelling
irradiance, surface chlorophyll concentration, and
photic zone depth as inputs. We found that the
toy model was unable to reproduce primary pro-
duction values that were larger than the ones on
which it was trained, and that large errors were
also obtained even within the range of observa-
tions contained in its own training set (0-3 g C
m~2 day ).
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To ascertain the performance of the toy model
compared to other, more conventional ap-
proaches, we also used a common model based on
linear regression of primary production on a com-
posite variable obtained from the product of the
same three variables used as neural network in-
puts (see Cole and Cloern, 1987). Despite what we
term poor performance of the toy model with the
larger data set from Chesapeake Bay, the esti-
mates of primary production were significantly
better than those obtained using conventional lin-
ear models that returned a mean square error
almost twice as high.

To overcome the shortcomings of the toy
model, a new 3-5-1 neural network was trained on
the basis of the entire 1982-1996 data set. Two
training procedures were carried out, one on raw
data and the other on log-transformed biomass
and primary production data, but none produced
a synaptic weight set that showed a significant
improvement over the toy model.

As in the case of the toy model, these networks
were not able to cope with high primary produc-
tion values, even though they were trained on a
quite large data set. This result was not unex-
pected because primary production in Chesapeake
Bay is clearly not regulated by phytoplankton
biomass, irradiance and photic zone depth alone;
there is a strong landward to seaward gradient in
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Fig. 2. Scatter plots of neural network outputs versus observed values for the toy model described in Scardi (1996). The 1982—1983
training subset was accurately fitted (a), whereas the whole 19821996 data set showed poor generalization (b).
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Fig. 3. Scatter plot of the neural network outputs versus
observed values for the 12-5-1 model. Both training and
validation data are shown. The overall agreement between
observed and simulated data was satisfactory (R?= 0.546).
The validation set values (white diamonds, R?=0.614) were
reproduced even better than the training set ones (black dia-
monds, R?=0.420).

dissolved nutrients and much of the Bay is nutrient
limited for at least part of the year. Accordingly,
we surmised that additional information was
needed to improve the model.

The neural network model using a 12-5-1 struc-
ture, i.e. a larger suite of predictive variables,
shows improved estimates over previous ap-
proaches (Fig. 3). This finding pertains both to the
training set shown as black diamonds, and to the
validation set shown as white diamonds. Primary
production values are predicted with greater accu-
racy (R? = 0.546) than in the case of linear or other
simpler models. The neural network also showed
good generalization properties, in that the valida-
tion set was fitted even better than the training set
(R?=10.614 and R?=0.420, respectively).

Although data for phytoplankton biomass and
primary production were log-transformed before
training, the model outputs need to be transformed
back to raw data in most applications. Therefore,
the error distribution of the model, which was
unbiased in log units, was also checked after
back-transforming data to raw units and a small

bias was detected (m,,,,, = — 0.14248, in the vali-
dation set). Obviously, this systematic error de-
pended on the different impact that very large and
very small values exerted with or without log
transformation.

In order to obtain unbiased primary production
estimates, a simple linear correction was defined by
least square optimization and applied to the neural
network output. The corrected estimates were then
computed by multiplying neural network outputs
by 1.15575 (this correction could be visualized as
a small vertical shifting of all the points in the
log—-log plot in Fig. 3).

The resulting error distribution was virtually
unbiased (m,,.,, = — 0.00174, in the validation set)
and almost symmetrical, as shown in Fig. 4. It
should be noted that more than 80% of the errors
of the primary production estimates in the valida-
tion set were within the +0.6 gCm~2day !, i.e.
less than 1/10 of the observed data range. More-
over, the accuracy of the model was also slightly
improved, as corrected outputs explained 3% more
variance (R?=0.578) than the uncorrected ones
(R?=10.546).

The accuracy of the neural network model and
its generalization capabilities were also tested on
an independent data set (n = 52), which was col-
lected during 1997 and therefore was not available
during the training phase. In the scatter plot in Fig.
5 predicted versus observed values are shown for
both this new testing set (large black circles) and
the original training and validation sets (small
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Fig. 4. Error distribution of the corrected neural network
outputs. The labels on the error axis indicate the upper limit of
each class.
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Fig. 5. Scatter plot of the neural network outputs versus
observed values. Both the new independent testing set (1997,
large black circles) and the original training and validation sets
(1982-1996, small white circles) are shown.

white circles). The new primary production values
were reproduced by the model with the same
accuracy as original data and were almost unbi-
ased, as their mean error was negligible (7., =
0.082).

The error distribution of the new testing set is
shown in Fig. 6, where it is compared to the error
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Fig. 6. Error distribution of the corrected neural network
outputs. The labels on the error axis indicate the upper limit of
each class.

distribution of the original data set. Even though
the latter is more regular and symmetrical, the
differences between the two distributions are mi-
nor and are probably influenced by the smaller
number of patterns in the new testing set.
Finally, a sensitivity analysis was carried out
using the whole 1982-1996 data set to assess the
effect of small changes in each input on the neural
network output. The results of this analysis
provide a useful insight into the neural network
model, but they also help to understand the un-
derlying ecological processes, i.e. the relative
importance of the predictive variables to
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—&—surface downwelling irradiance
—— light extinction coefficient
0% ’ . : i . —o—photic zone depth
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max(lrndl)

0.5

Fig. 7. Percentage variation of the mean square error of the neural network output at increasing levels of input perturbation. White
noise ranging from [ — 0.1, 0.1] to [ — 0.5, 0.5] was added to each input variable in the whole 1982—-1996 data set and the resulting
increase in mean square error was expressed as a percentage of the original mean square error.
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Fig. 8. Percentage variation of the mean square error of the neural network output after the addition of [ — 0.5, 0.5] white noise. The

input variables are ranked according to their sensitivity.

phytoplankton primary production in Chesapeake
Bay.

In the sensitivity analysis, the mean square
error of the neural network output is expected to
increase as a larger amount of white noise is
added to the selected input variable. The mean
square error variations that were observed after
white noise additions varying from [ — 0.1, 0.1] to
[—0.5,0.5], ie. from 20 to 100% of the input
range, are shown in Fig. 7.

The minimum level of input perturbation was
similar in magnitude to the measurement error of
the oceanographic data and so were the changes it
induced in the mean square error of the neural
network output (< 5%). Increasing white noise
additions caused increasing mean square errors in
the output, even though this relationship was not
absolutely monotonic, because less sensitive vari-
ables, that did not affect the neural network out-
put very much, showed a few negative increments.
However, the relative sensitivity of the input
variables did not vary significantly when very
large amounts of white noise were added. These
results suggest that the primary production model
that was embedded in the neural network
was probably consistent with the ecological pro-
cesses as it was not misled by unlikely input
patterns.

The most influential variable among the neural
network inputs in affecting output was by far the
total chlorophyll in the photic zone. It was the
only input variable that caused an increase in the
mean square error larger than 100% when [—
0.5, 0.5] white noise was added, as it is clearly
shown in Fig. 8. As expected for a primary pro-
duction model, the predictive variables that were
related to light availability and phytoplankton
biomass had the largest effects on output among
the remaining variables. The least influential vari-
able was salinity, despite that it may be viewed as
a proxy for freshwater inflow and often covaries
with nutrient concentrations.

4. Discussion

The neural network provided accurate and un-
biased estimates of phytoplankton primary pro-
duction for a system that is characterized by high
spatial and temporal variability. This is a satisfy-
ing result, given the shortcomings of linear models
that fail to perform acceptably with the same data
and that contain biases that are particularly pro-
nounced at low and high primary productivity
rates. In most cases, the error of primary produc-
tion estimates obtained with the neural network
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was within the range of the measurement error.
We believe the neural network approach outper-
formed conventional empirical models because it
is inherently much more flexible in dealing with
the influences of a number of variables that regu-
late phytoplankton primary productivity in
estuaries.

Our results were obtained using a very conser-
vative approach as far as generalization is con-
cerned, because most of the available data were
used for neural network validation and only a
restricted subset, i.e. less than one third of the
entire data set, was used for neural network train-
ing. We also tested our neural network model
using an independent data set that was not avail-
able during development of the model. The suc-
cess of this approach implies that the present form
of our model is probably less than optimal and
that further improvements are still possible. A
further consideration is that the training proce-
dure was not optimized (a constant learning rate

Phytoplankton primary production
(g C m2day-)

23-28 July 1995

Fig. 9. An example of application of the neural network. The
phytoplankton primary production was estimated over the
whole Chesapeake Bay mainstem area using interpolated input
data. Each pixel in the image corresponds to a 1 km? square.

and no momentum were used), and improvements
in this area may refine the model further.

The neural network model of Chesapeake Bay
phytoplankton primary production can play an
important role in monitoring and research activi-
ties, because it may permit reduction of the num-
ber of direct primary production measurements
that are needed to reconstruct large scale spatial
patterns or high frequency time series. An exam-
ple of such an application is shown in Fig. 9, in
which the distribution of phytoplankton primary
production in the mainstem area of Chesapeake
Bay is presented as a grayscale image. These
estimates were based on discrete data collected
during a summer cruise (23-28 July 1995) that
were interpolated to generate complete input
grids. In future applications some of these input
grids could be replaced with remotely sensed data.
An aircraft remote sensing program (cf. Harding
et al., 1992, 1994, 1995) provides high resolution
estimates of chlorophyll for the estuary, using
sensors designed to replicate band of the satellite
ocean color instrument, SeaWiFS, that is now
providing global coverage. Data from this source
can be substituted for shipboard observations and
fill time and space gaps that accompany more
routine sampling. Given that the most influential
variables on model output are related to the accu-
racy of biomass inputs, we envision improved
performance of the neural network model when
remotely sensed data are used.

We believe the principal explanation for the
superior performance of the neural network
model to that of more conventional approaches is
that the complexity of factors that regulate phyto-
plankton primary production are better captured.
From a purely theoretical viewpoint, other empir-
ical models might also obtain this result, provided
that their formulation is carefully defined and
sufficiently complex to incorporate the data struc-
ture. However, in these cases the model formula-
tion has to be explicitly defined by the modeler,
who usually opts for an empirical approach when
his/her understanding of the processes to be mod-
eled is not complete or he/she thinks that accu-
racy can be traded for simplicity.

An example of the degree of complexity of the
relationships that can be reproduced by a neural
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Fig. 10. Neural network output versus total chlorophyll in the photic zone in different seasonal scenarios: summer (a) and fall (b).
More than 7000 points, corresponding to pixels in images similar to Fig. 9, are shown in each plot. The position of each point
depends on the photosynthetic efficiency of the whole water column and a steeper overall slope implies a higher photosynthetic
efficiency, as in the summer 1997 plot (a). It is interesting to notice that the neural network model was able to reproduce a range

of different area-specific non-linear relationships.

network model is shown in Fig. 10. The neural
network outputs (i.e. estimates of phytoplankton
primary production) that were obtained for more
than 7000 input patterns were plotted against one
of the inputs, the total chlorophyll in the photic
zone. Therefore, the position of each point is
determined by the photosynthetic efficiency of the
whole water column. It is very clear that the two
seasonal scenarios that were considered were com-
pletely different because the overall photosynthetic
efficiency varies in time. However, it is also clear
that the biomass/production relationship is also
variable within each sub-plot, because all the points
are arranged as to form a set of curves, each one
having a different slope, that reproduce the spatial
variation of the biomass/production relationship in
Chesapeake Bay. Even though the sensitivity anal-
ysis showed that the total chlorophyll concentra-
tion was probably the most relevant input variable,
plots obtained with other variables also showed
similar patterns.

Finally, it has to be stressed that sensitivity
analysis might play an important role in both the
optimization of the neural network models and in
understanding the processes to be modeled. Sensi-
tivity analysis is not a simple and straightforward
task when analytical models are taken into account,
but it is even more challenging when neural net-

works are considered. However, the procedure we
used was able to analyze the first-order effects of
input perturbation on the neural network output
and the results provided a useful insight both into
the neural network mechanics and primary produc-
tion processes. The neural network outputs were
almost invariant when small perturbations, similar
to those that depend on sampling errors, were
introduced. On the other hand, when more noise
was added to the inputs, the role of each variable
could be defined in terms of relative importance in
determining phytoplankton primary production.

The total chlorophyll in the photic zone, i.e. the
total biomass that is photosynthetically active, was
clearly the most important predictive variable.
Other variables, such as salinity, were less sensitive
to the addition of white noise and therefore seem
to play a less important role. Of course, excluding
these variables might help prune the neural network
structure. This kind of optimization is not very
important from a computational point of view, but
could reduce the cost of data acquisition without
a significant loss in accuracy of the model.

The neural network model of Chesapeake Bay
phytoplankton primary production has been imple-
mented in Java and can be tested at the following
URL:  http://www.mare-net.com/mscardi/work/
nn/cbjavann.htm.
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